Bridging Technical Possibilities With Policy Technicalities

Montreal, QC June 24, 2003

Past, Present, and Future

- The Whois policies of today are severely constrained by the Whois protocol of yesterday.
- In the future, CRISP will allow greater flexibility for policy.
- The questions should no longer be "How do we do this?" but "What do we want?"

The Past

- Whois was first described in RFC 812 in 1982.
 - It was titled "Nicname/Whois"
 - Its IANA port registration is under the "Nicname".
 - RFC 812 describes Whois over NCP, not IP.
- By comparison, the first RFC to describe DNS was published in 1983.
- RFC 954, the most current specification for Whois, spends more text describing who from ARPANET & MILNET should be in the database than describing the protocol itself.

The Present

- Nicname/Whois is used for many types of data:
 - domain registration data
 - IP address allocation data
 - Routing policy data
 - others... many we don't even know about

The Present Users

- Nicname/Whois users are no longer just a couple of node operators on ARPANET. They are:
 - Intellectual property holders
 - Law enforcement
 - Service providers
 - Network operators
 - Registrars
 - Registrants
 - DNS users
 - Abusive users

The Future

- The CRISP working group of the IETF is working on a new specification for use by registries of Internet resources.
- It is applying what we have learned about operating services over the Internet from the 20 intervening years to the problems of today.

CRISP Goals

- Access controls
 - allows service operators to differentiate between the varying types of users
- Internationalization (I18N)
 - provides a user experience beyond ASCII and creates an environment for localization (L10N).
- Decentralized
 - facilitates navigation between repositories without requiring aggregation of data

Authentication vs. Authorization

- Authentication the process used to verify the identity of a user
- Authorization the access policies applied to a user based on authentication
- Authentication mechanisms facilitate authorization schemes.

Today's Authentication

- Anonymous
 - because RFC 954 assumes all users to be equal
- Source IP address
 - this is an artifact of the Internet Protocol and was never intended as an authentication mechanism
- Hence, the authorization policies of today are limited.

Modern Authentication and Authorization

- Authentication mechanisms
 - passwords, one-time passwords, digital certificates, references
- Authorization schemes
 - user-based, sequence-based, chain-based,
 attribute-based, time-based, referee-based

Passwords

- An old idea still valid in today's world.
 - Newer technologies allow passwords to be passed securely on unencrypted channels.
 - The user experience is the same.
- Passwords allow for the well understood user-based authorization schemes.

One-time Passwords

- One-time password systems are cryptographic mechanisms designed to keep pass phrases from being sent in the clear over unencrypted sessions.
 - However, their design limits their use to a finite number of authentications with both parties keeping track of the number of uses.
 - But the user experience is not much different than normal passwords.
- This allows for sequence-based authorization
 - access may be changed based on the number of times a user authenticates.

Digital Certificates

- Use a branch of mathematics called public key cryptography to conduct authentication.
 - Used in conjunction with TLS, they also allow for server authentication and session encryption.
- Facilitate the following authorization schemes:
 - user-based
 - chain-based
 - attribute-based
 - time-based

Certificate Chains

Authorization can be based on one of the certificates in the chain.

• Example:

- If the certificate is signed by the "lea CA"
 - Allow access to all contact data
- If the certificate is signed by the "regr CA"
 - Allow access only to all domain and registrant data

Attributes in Certificates

- Information attributes in certificates are cryptographically secure.
- Example:
 - If the "Type" attribute in the certificate equals "LEA"
 - Allow access to all contact data
 - If the "Type" attribute in the certificate equals "Registrar"
 - Allow access only to all domain and registrant data

Name: Organization X

Type: Registrar

Signature: 55XC5F9G 7RXWQ2546ERTI332

Referrals

- The CRISP protocols allow a server to pass extra information via a client to a referent server.
- This information may contain authentication data, thus allowing a referee-based authorization policy.

Conclusion

- CRISP will allow much more than is currently possible with Nicname/Whois.
- The question should no longer be:
 - How do we do this?
- The question should be:
 - What do we want?